0

Full Content is available to subscribers

Subscribe/Learn More  >

Minimizing the Wick Thickness in a Planar Microscale Loop Heat Pipe Using Efficient Thermodynamic Design

[+] Author Affiliations
Navdeep S. Dhillon, Jim C. Cheng, Albert P. Pisano

University of California, Berkeley, Berkeley, CA

Paper No. IMECE2011-64698, pp. 1121-1129; 9 pages
doi:10.1115/IMECE2011-64698
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME

abstract

Theoretical and numerical thermodynamic analysis of the evaporator section of a planar microscale loop heat pipe is presented, to minimize the permissible wick thickness in such a device. In conventional cylindrical loop heat pipes, a minimum wick thickness is required in order to reduce parasitic heat flow, and prevent vapor leakage, into the compensation chamber. By taking advantage of the possibilities allowed by microfabrication techniques, a planar evaporator/compensation chamber design topology is proposed to overcome this limitation, which will enable wafer-based loop heat pipes with device thicknesses on the order of a millimeter or less. Thermodynamic principles governing two-phase flow of the working fluid in a loop heat pipe are analyzed to elucidate the fundamental requirements that would characterize the startup and steady state operation of a planar phase-change device. A three dimensional finite element thermal-fluid solver is implemented to study the thermal characteristics of the evaporator section and compensation chamber regions of a planar vertically wicking micro-columnated loop heat pipe. The use of in-plane thermal conduction barriers to reduce parasitic heat flow into the compensation chamber is demonstrated.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In