0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of High-Order Scheme for Flow/Acoustic Simulation at the Interface Between Air and Porous Medium

[+] Author Affiliations
Ying Xu, Z. C. Zheng

Kansas State University, Manhattan, KS

Paper No. IMECE2009-11694, pp. 289-297; 9 pages
doi:10.1115/IMECE2009-11694
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 15: Sound, Vibration and Design
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4388-8 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Accuracy at the interface is an important aspect in simulating air/porous medium problems for sound propagation in the atmosphere. Currently, high-order schemes have been used in simulation for viscous flow around steady and moving solid bodies, but still have not been applied to simulating flow field in different media. The study in this paper is intended to apply a high-order scheme to improve the accuracy at the interface between air and porous medium. In the vicinity of the interface, spatial derivatives of flux are discretized using different high order schemes: second-order upwind scheme, third-order upwind scheme, and 5th -order WENO scheme. The calculations are performed on a staggered Cartesian grid. The model equations for flow in the air used in this paper are the Navier-Stokes equations for incompressible flow. Flow inside the windscreen (porous medium) is modeled with a modified Zwikker-Kosten equation (Sound Absorbing Materials, 1949). An immersed-boundary method using direct forcing is utilized. The problem of flow over a solid cylinder is used as a validation case for different schemes that are implemented and compared. The application of the study is to investigate the sound pressure level reduction between unscreened microphone and screened microphone under different frequencies of incoming wind turbulence. The wind turbulence in the present work is introduced by placing different sizes of solid cylinders in the upstream of the microphone. The simulation shows that for low-frequency turbulence, the windscreens with low flow resistivity are more effective in noise reduction, while for high-frequency turbulence, the windscreens with high flow resistivity are more effective.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In