0

Full Content is available to subscribers

Subscribe/Learn More  >

Tracking of Capillary Interface in Microfluidic Channels

[+] Author Affiliations
Prashant R. Waghmare, Farhan Ahmad, David S. Nobes, Sushanta K. Mitra

University of Alberta, Edmonton, AB, Canada

Paper No. IMECE2011-63118, pp. 1065-1067; 3 pages
doi:10.1115/IMECE2011-63118
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME

abstract

Capillarity is commonly used for fluid transport in microfluidic devices. The capillary flow can be divided into three different flow regimes: entry regime, Poiseuille regime, and surface tension regime as shown in Fig. 1[1]. Generally, it is anticipated that at the entrance of any narrow confinement, the flow goes through entrance flow regime. For capillary flow, this entrance regime has generally been neglected in the literature. Beyond this entrance regime, the flow attains the fully developed velocity profile across the channel, which is termed as a Poiseuille flow. Moreover, in the capillary flow, the interface is always under traction — due to the capillary forces and hence, a third flow regime needs to be considered behind the interface which is referred as the surface tension regime. These regimes are yet to be experimentally explored and analyzed. An “in-house” developed μ-PIV system is used to quantify the flow field at the liquid/air interface (surface tension regime) in a rectangular glass microchannel of dimension 1.5 mm (width) × 500 μm (depth). The magnitude of velocity and the flow front evolution along the microchannel is calculated utilizing commercially available image processing software. Figure 2 shows the μ-PIV experimental setup used here. The main components of the experimental setup include an imaging device, magnification optics, and a continuous laser source (473 nm) in back illumination mode. The fluorescent particle of 1.9 m in diameter with DI water is used as a working fluid. The concentration of the microparticles is very less which is approximately 1%, therefore the effect of microbead concentration on the wetting properties is considered to be negligible for the present study. Moreover, it is assumed that the surface properties of the particles also do not affect the fluid flow. The capillary flow interface is captured and the corresponding processed images are presented to depict the velocity field at the liquid/air interface. The enlarged view of the microchannel cross section is shown in Fig. 2. The section A-A is the location at which the images are captured for the analysis.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In