Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Number of Stator Blades on the Performance of a Torque Converter

[+] Author Affiliations
Shoab Ahmed Talukder, B. Phuoc Huynh

University of Technology, Sydney, Sydney, NSW, Australia

Paper No. IMECE2011-65078, pp. 949-953; 5 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME


Torque converter (TC) is a totally enclosed hydrodynamic turbomachine, used most often in automobiles for the smooth transfer of power and speed change from the engine to the transmission, and torque magnification. A typical TC has 3 major components: a pump that is attached directly to the TC cover and connected to the engine shaft, a turbine connected to the transmission shaft, and a stator connected to the transmission housing via a one-way clutch and providing guidance for the fluid flow. In this work, effects of the number of stator blades on the performance of a TC are investigated numerically, using a commercial Computational Fluid Dynamics (CFD) software package. The standard k-epsilon turbulence model was used. A Newtonian fluid whose properties correspond to industrial oil was used for the working fluid. The range of speed ratio (between turbine’s speed and pump’s) of 0.2–0.8 was considered. It was found that as the stator blades’ number increases (here from 13 to 19), the TC’s efficiency and torque ratio vary significantly, passing through minimum and generally also reaching a maximum.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In