Full Content is available to subscribers

Subscribe/Learn More  >

Gas Mass Flow Rate Measurement in T-Shaped Microchannels in Slip Flow Regime

[+] Author Affiliations
Yongli Li, David Newport

University of Limerick, Limerick, Ireland

Christine Barrot, Lucien Baldas, Stéphane Colin

Université de Toulouse, Toulouse, France

Jürgen J. Brandner

Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

Paper No. IMECE2011-65812, pp. 775-782; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME


A new setup was developed for gas mixing analysis in T-shaped microchannels. The principle of the flow rate measurement was based on the Constant Volume (CV) method [1]. The mass flow rate measurements of two gases N2 / CO2 mixing in a T mixer were carried out in the slip flow regime and followed by a simulation work for comparison. The mass flow rate has a magnitude of 10−8 or 10−7 kg/s and has good agreement with simulation for the lowest inlet over outlet pressures ratios and moderate agreement for the highest inlet over outlet pressures ratios.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In