0

Full Content is available to subscribers

Subscribe/Learn More  >

Anisotropic Band Gap in a 2D Acoustic Metamaterial

[+] Author Affiliations
H. H. Huang, C. T. Sun

Purdue University, West Lafayette, IN

Paper No. IMECE2009-10600, pp. 93-96; 4 pages
doi:10.1115/IMECE2009-10600
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 15: Sound, Vibration and Design
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4388-8 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

A two-dimensional (2D) metamaterial possessing an effective anisotropic mass is investigated. This metamaterial is a composite material in the form of an internal mass connected in two directions to the host medium. A 2D mass-in-mass lattice model is used to characterize the dynamic behavior of the metamaterial. If modeled as an effective spring-mass lattice system, the metamaterial may possess a frequency-dependent effective mass. Moreover, if an equivalent homogenous elastic continuum is used to represent the metamaterial, an anisotropic mass density may result and may assume negative values for wave frequencies that are near the local resonance frequency of the internal mass. In fact, it was found that negative mass density occurs in the band-gap of the metamaterial. Unusual wave motion arises from the anisotropic band gap structure. In the present study, wave propagation in the representative continuum model for the metamaterial is studied in order to understand the unusual features of the dynamic behavior of the metamaterial.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In