Full Content is available to subscribers

Subscribe/Learn More  >

Characterisation of Air-Water Two-Phase Flow Using a Wire-Mesh Sensor

[+] Author Affiliations
Carlos E. F. do Amaral, Óliver B. S. Scorsim, Eduardo N. Santos, Marco José da Silva, Marco Germano Conte, Rigoberto E. M. Morales

University of Technology - Paraná, Curitiba, PR, Brazil

Paper No. IMECE2011-62777, pp. 695-702; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME


Two phase flow occurs in many industrial applications, mainly in the transport of mixtures. Many patterns can be produced according to the liquid and gas flow rates. The identification of these patterns is very important in the design of piping systems and equipments. This work proposes an experimental study to identify multiphase flow patterns of water and air in horizontal pipes. The study was developed using an experimental circuit of 26 mm diameter and 9.2 m length pipe, at Thermal Sciences Lab (LACIT) at the Federal University of Technology - Paraná. To characterize the flow patterns, an intrusive mesh electrodes sensor was used, which allows the detailed visualization of the phases distribution. Tests were made using several experimental settings of water and gas flow rates. Measurements were compared to images obtained by high speed camera and the temporal void fraction series which were analyzed with the use of PDF and PSD functions, showing the singularities for each two-phase flow pattern.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In