0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Convective Heat Transfer of Aqueous Nanofluids in Microchannels Integrated With Temperature Nanosensors

[+] Author Affiliations
Jiwon Yu, Seok-won Kang, Saeil Jeon, Debjyoti Banerjee

Texas A&M University, College Station, TX

Paper No. IMECE2011-64082, pp. 551-556; 6 pages
doi:10.1115/IMECE2011-64082
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME

abstract

Forced convective heat transfer experiments were performed for internal flow of de-ionized water (DIW) and aqueous nanofluids (ANF) in microchannels that were integrated with a calorimeter apparatus and an array of temperature nanosensors. The heat flux and wall temperature distribution was measured for the different test fluids as a function of fluid inlet temperature, wall temperature, heat flux, nanoparticles concentration, nanoparticle materials (composition, nanoparticle size and shape) and flow rates. Anomalous behavior of the nanofluids in convective heat transfer was observed where the heat flux varied as a function of flow rate and bulk temperature. The heat exchanging surfaces were characterized using electron microscopy (SEM, TEM) to monitor the change in surface characteristics both before and after the experiments. Precipitation of nanoparticles on the walls of the microchannels can lead to the formation of “nano-fins” at low concentrations of the nanoparticles while more rampant precipitation at high concentration of the nanoparticles in the nanofluids can lead to scaling (fouling) of the microchannel surfaces leading to degradation of convective heat transfer — compared to that of pure water under the same experimental conditions. Also, competing effects resulting from the decrease in the specific heat capacity as well as anomalous enhancement in the thermal conductivity of aqueous nanofluids can lead to counter-intuitive behavior of these test liquids during forced convective heat transfer.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In