0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Effects of the Saffman Force and the Magnus Force on Sand Saltation in Turbulent Flow

[+] Author Affiliations
Z. Charlie Zheng

University of Kansas, Lawrence, KS

Xueyong Zou

Bejing Normal University, Beijing, China

Xiaofan Yang

Pacific Northwest National Laboratory, Richland, WA

Hong Cheng

Beijing Normal University, Beijing, China

Paper No. IMECE2011-62724, pp. 501-506; 6 pages
doi:10.1115/IMECE2011-62724
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME

abstract

The effects of both the Saffman force and Magnus force on sand saltation are investigated. Turbulent flows in a channel and over a barchans dune are considered with sand particles injected into the flow. The results show that both of the forces increase the height and skipping distance of sand saltation, with the Magnus force giving more significant effect on the height. These forces can also increase the sand settling at the lee side of the barchans dune.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In