Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Minimum Fluidization Velocity for Gas-Solid Beds by Experimental Data and Numerical Simulations

[+] Author Affiliations
Meire Pereira de Souza Braun, Helio Aparecido Navarro, Paulo Sergio Varoto

University of São Paulo, São Carlos, SP, Brazil

Geraldo Luiz Palma

Universidade Estadual Paulista, Bauru, SP, Brazil

Paper No. IMECE2011-62524, pp. 493-499; 7 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME


The purpose of this work is to predict the minimum fluidization velocity Umf in a gas-solid fluidized bed. The study was carried out with an experimental apparatus for sand particles with diameters between 310μm and 590μm, and density of 2,590kg/m3 . The experimental results were compared with numerical simulations developed in MFIX (Multiphase Flow with Interphase eXchange) open source code [1], for three different sizes of particles: 310mum, 450μm and 590μm. A homogeneous mixture with the three kinds of particles was also studied. The influence of the particle diameter was presented and discussed. The Ergun equation was also used to describe the minimum fluidization velocity. The experimental data presented a good agreement with Ergun equation and numerical simulations.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In