0

Full Content is available to subscribers

Subscribe/Learn More  >

Harmonic Analysis to Determine Contact Characteristics of Concentrated Counterformal Contacts

[+] Author Affiliations
M. Teodorescu, H. Rahnejat

Loughborough University, Loughborough, Leicestershire, UK

R. Gohar

Imperial College of Science, Technology and Medicine, UK

Paper No. ESDA2004-58544, pp. 663-668; 6 pages
doi:10.1115/ESDA2004-58544
From:
  • ASME 7th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1
  • Manchester, England, July 19–22, 2004
  • ISBN: 0-7918-4173-1 | eISBN: 0-7918-3741-6
  • Copyright © 2004 by ASME

abstract

Contact mechanics of solids of revolution is characterised by their deformation behaviour under load. This is strongly influenced by their geometry and elastic properties. These parameters and the applied load determine the deformation of the contiguous solids, giving rise to contact pressure distribution and sub-surface stress fields, which are necessary to determine fatigue spalling performance. Load bearing surfaces are usually lubricated and the deformation of contiguous solids is often crucial in providing a gap for lubricant film formation and avoidance of asperity interactions on adjacent surfaces and the ensuing wear. Therefore, determination of contact deformation is essential in prediction of contact conditions. This usually requires the solution of the elasticity integral in the form of elliptic functions, which are discretised and achieved through time intensive numerical methods. In lubricated counterformal contacts under high loads and with materials of high elastic moduli, this amounts for the major computing resource requirement within any form of analysis, such as the usual elastohydrodynamic lubrication. The paper shows that any arbitrary pressure distribution over a given contact area may be represented by a harmonic series. The response of the elastic solids to the application of such a harmonic series leads to the evaluation of their contact deformation and sub-surface stress field of also a harmonic nature. The repercussion of this approach is that for a given applied contact load, harmonic analysis may be employed in order to analytically obtain the same predictions as those with much more time consuming numerical analysis. The paper proves the analytical approach by comparison with the case of an infinite line contact, or a one-dimensional contact, for which analytic solution based on the Hertzian theory exists as a classical case. Then, the conformance of the methodology to deviations of surface friction. An advantage of the method over those reported in literature is the simultaneous evaluation of the local contact deformation, as well as the sub-surface stress field. This approach can be extended to the case of rough surfaces, where the harmonic analysis may be used as an approximation.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In