0

Full Content is available to subscribers

Subscribe/Learn More  >

Normal-Mode and Lumped Mass Assessment of Acoustic Degassing of Liquid Metals in an Inductively Heated Cylindrical Furnace

[+] Author Affiliations
Yinghui Shi, John C. Petrykowski

University of Dayton, Dayton, OH

Paper No. IMECE2011-65531, pp. 143-148; 6 pages
doi:10.1115/IMECE2011-65531
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5492-1
  • Copyright © 2011 by ASME

abstract

In a number of aerospace materials processing applications, including float zone refining of electronic materials, forming of metallic glasses and induction melting of light alloys, time-dependent electromagnetic forces associated with the processing are found to influence surface shape, nucleation of precipitates, evolution of crystal nucleation sites, segregation of alloy components, grain refinement and degassing. For this last action, which finds its prime occurrence in specially designed induction furnaces, the scale up from test stand to prototype is especially sensitive to a detuning that can occur when a common set point is sought for optimizing the concomitant electrical and mechanical performance of the system. This paper outlines a continuum based model that can be used to identify a favorable set of operating conditions so that an effective and efficient, electromagnetically-induced vibrational degassing operation can proceed within the furnace. The optimization metric utilizes a coupled magnetoacoustic system of governing equations, which is subsequently solved to obtain the dynamic response of a molten metallic to an eddy current-type excitation. The solutions display both a transient and steady state response, as well as eigenmode and eigenfrequency characteristics which capture both the spectral signatures of the furnace as well as the optimum operating conditions for degassing. The solutions are obtained with the aid of higher transcendental functions of Bessel type, generated within a MATLAB environment. A set of operating conditions is identified which would promote optimal degassing for light alloys in commercial size induction furnaces. The magnetic field model embedded in the solution is sufficiently general to allow for use in analyzing a DC field biasing method which has recently shown promise for use in grain refinement and metallic glass forming applications for which the characteristics of the vibrational field can be utilized to effectively diminish crystal nucleation.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In