Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Immersion Quench Cooling Process: Part II

[+] Author Affiliations
Vedanth Srinivasan, DeMing Wang

AVL Powertrain Engineering, Inc., Plymouth, MI

Kil-min Moon

Hyundai-Kia Motors, Hwaseong, South Korea

David Greif

AVL AST, Maribor, Slovenia

Myung-hwan Kim

AVL Korea Ltd., Seoul, South Korea

Paper No. IMECE2008-69281, pp. 1955-1964; 10 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


In this article, we present the numerical simulation of a real cylinder head quenching cooling process using a newly developed approach for immersion quenching described in Part I of this research. Computational grids, consisting of 1.6 million cells in the coolant (liquid) domain and 1.5 million cells in the solid region, are utilized to perform the ACCI coupled quenching simulation implemented in the commercial code AVL-FIRE framework. Multitude of flow features such as vapor pocket generation, bubble clustering and their disposition are captured very effectively during the computation. Comprehensive descriptions of the flow field information and the temperature pattern in the solid at different time instants are provided. A comparison of the registered temperature readings at different monitoring locations with the numerical results generates an overall very good agreement. Our results indicate the presence of intense non-uniformity in the temperature distribution within the solid region which is of grave importance in evaluating the stress and fatigue patterns generated in the quenched object. The capability of the quenching model in simulating a real-time immersion quenching application process and the efficiency in reducing the overall model size by the application of the ACCI procedure is well demonstrated.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In