Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study of Ammonia-Water Absorption Into a Constrained Microscale Film

[+] Author Affiliations
Ruander Cardenas, Vinod Narayanan

Oregon State University, Corvallis, OR

Paper No. IMECE2008-67021, pp. 1811-1823; 13 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


A one-dimensional, steady state, semi-empirical model of an ammonia-water microscale bubble absorber is presented. The geometry consists of a microchannel through which a solution of ammonia-water flows. Ammonia vapor is injected through one of the walls of the channel. A counter flowing coolant solution removes the heat generated due to absorption from the opposite wall. The 1-D, steady state species and energy transport equations are solved to yield, along the length of the channel, concentration and temperature profiles of the solution stream and the temperature profile of the coolant fluid stream. Values for the overall heat transfer coefficient from experimental results are used in this model. A parametric study of fluid and geometrical parameters based on the model is presented. The varied fluidic parameters include the mass flow rates of the weak solution, coolant, and vapor, the inlet coolant temperature, and the weak solution concentration. Two variations of the vapor distribution that resulted from a geometrical variation of the porous plate are considered: (a) variation in length of the non-porous section, and (b) variation in the number of intermittent sections in which there was no injection of vapor. Trends of the parametric study were consistent with those of experiments. A salient result of the parametric study indicates that incomplete absorption occurs with an increase in weak solution flow rate due to the decrease in residence time within the microchannel for absorption. At a specific fixed flow condition, a single porous section followed by a non-porous section provides the optimal vapor distribution for absorption within the channel. The length of this non-porous section for optimal absorption within the channel is also determined using the model.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In