0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Heat Flux Distribution in Deep Grinding

[+] Author Affiliations
D. H. Zhu, B. Z. Li, J. G. Yang

Donghua University, Shanghai, China

Paper No. IMECE2008-69154, pp. 1793-1799; 7 pages
doi:10.1115/IMECE2008-69154
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

This paper studies the heat transfer mechanism in deep grinding process, especially the heat flux to the workpiece. On the basis of triangle moving heat source, a quadratic curve heat flux model in the grinding zone was developed to determine the heat flux distribution and to estimate the surface temperature of workpiece. From the calculated theoretical expression of heat flux to the workpiece, the quadratic curve heat flux can be understood as the superposition of square law heat flux, triangular heat flux and uniform heat flux in the grinding zone. Then four heat flux models using the determined amount of heat flux were applied to estimate the workpiece surface temperatures which were compared with that measured by the embedded thermocouple. It has been found that the quadratic curve heat flux distribution seems to give the best match with measured and theoretical temperature, although square law heat flux model is good enough to predict the temperature.

Copyright © 2008 by ASME
Topics: Grinding , Heat flux

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In