0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Multi-Field FEA Model for Predicting Current Density Distribution When Deforming Sheet Metal Under a Direct Current

[+] Author Affiliations
John T. Roth, Amir Khalilollahi, Daniel J. Jageman

Penn State Erie, Erie, PA

Paper No. IMECE2008-67771, pp. 1705-1714; 10 pages
doi:10.1115/IMECE2008-67771
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Previous investigations have been performed that involve developing new ways in which to deform a material while minimizing the energy required to do so. More recent research involves applying an electric current to the workpiece to achieve superplasticity. However, those investigations only utilized uniaxial workpieces and lack the ability to be used for more common geometries. The research presented herein, however, the effect is investigated under three-dimensional conditions so that the results could be projected to more realistic sheet metal geometries. A working finite element analysis (FEA) model has been developed to analyze these more complicated three-dimensional flow fields and will be presented as a part of this research. The model was used to solve for the temperature and current density distributions across the workpiece. The results from the FEA model are compared to results obtained from experimental tests. In the experimental setup, the two dome heights were separately tested under the same conditions that the FEA model simulated, however, only a temperature distribution was obtained here. The comparison of the FEA results and the experimental results related the temperature distribution to the current density distribution across the workpiece. From here, the individual effects of certain parameters on the distributions were found. The parameters included: duration of current, amount of current, electrode placement, and dome height geometry. The results showed that the current density distribution can be manipulated by varying the above parameters. This capability can be used to delay tearing/necking of a sheet metal workpiece under deformation.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In