0

Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Computation of Thermal Properties in Si/Ge Nanocomposites

[+] Author Affiliations
Xiaopeng Huang, Xiulan Huai, Shiqiang Liang, Ji Li

Chinese Academy of Sciences, Beijing, China

Xinwei Wang

Iowa State University, Ames, IA

Paper No. IMECE2008-66856, pp. 1663-1674; 12 pages
doi:10.1115/IMECE2008-66856
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

In this paper, an atomic scale study is carried out to characterize the thermal transport in Si/Ge nanocomposites by using the molecular dynamics (MD) simulation. The influence of size, heat flux, interface, as well as voids, on thermal properties and the inner temperature profiles of nanowire composites are studied. The results show that the thermal conductivity of nanowire composites is much lower than that of alloy, which accounts mainly for ZT enhancement and owes a great deal to the effect of interface thermal resistance. The results also indicate that a nonfourier phenomena what we call “reflecting effect” is remarkable at the Si/Ge interface, and the thermal conductivity is also dependent slightly on the bulk temperature and the specified heat flux in the range of selected system sizes and temperatures. It is also investigated that how the thermal conductivity of Si1−x Gex composites changes with the atomic percentage x of germanium for wire dimension of LSi = 10 nm. Simulation results reveal that for a constant silicon wire dimension, the thermal conductivity of the Si/Ge nanocomposites increases with x. An attempt study on the influence of the voids on thermal conductivity shows that the thermal conductivity decreases with the void density. Most of the presented results from the simulations in this work come to favorable agreement with previous work, suggesting a good reliability of the present simulation method for further analysis of thermal transportation phenomena in nanocomposites and even more complex composites with pores, dislocations and impurities.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In