Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Pressure Wave Generator Characteristics on Pulse Tube Cryocooler Performance

[+] Author Affiliations
A. Jafarian, M. H. Saidi, N. Sarikhani, S. K. Hannani

Sharif University of Technology, Tehran, Iran

Paper No. IMECE2008-68459, pp. 1649-1654; 6 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Recent developments of superconductive industry require cryocoolers with cooling power higher than one Watt in the 70–80 K temperature range. High capacity pulse tube cryocoolers assure the cooling power required for operation of superconducting devices. The purpose of this paper is to investigate the influence of the pressure wave generator on high capacity pulse tube cryocooler performance. In this respect the hydrodynamic and thermal behavior of the cryocooler is explained by applying the mass and energy balance equations to different components of the cryocooler cycle. A linear temperature profile is assumed in the regenerator and nodal analysis technique is employed to simulate the tube section behavior numerically. Employing the proposed model the effect of pressure wave characteristics at the inlet boundary, namely, the Stirling type and G-M type pressure inlet on cryocooler performance are investigated. The influence of Pressure amplitude, frequency and swept volume is studied as well.

Copyright © 2008 by ASME
Topics: Pressure , Waves , Generators



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In