0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal and Thermomechanical Analysis of Custom Engineered Ag-Nanoparticle Thermal Interface Materials

[+] Author Affiliations
Viral Chhasatia, Ying Sun, Fan Zhou, Liwei Huang, Howard Wang

State University of New York (SUNY) - Binghamton, Binghamton, NY

Paper No. IMECE2008-68896, pp. 1577-1586; 10 pages
doi:10.1115/IMECE2008-68896
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Thermal interface material (TIM) is a major hurdle in heat flow for typical chip/heat sink assemblies. In many electronic devices, hot spots occur in areas of high activity during the device operation. These hot spots can lead to high thermal gradients, which in turn result in performance and reliability hindrances. The elevated, non-uniform power density confronted with conventional TIMs that contain a uniform layer of high thermal conductivity material for the entire chip can be extremely insufficient in many applications. In this paper, a custom engineered, Ag-nanoparticle (Ag-NP) TIM that targets directly to the high power density region is introduced for achieving better thermal-mechanical-electrical performance at a low cost. These nanoparticles can be inkjet printed on hot spots and sintered at a relative low temperature (∼120°C) to create a continuous metallic layer that is in good contact with both the chip and heat sink, whereas the conventional particle-laden TIM covers the lower power density area. A computational model is developed to examine the overall thermal performance and reliability of the hybrid Ag-NP/conventional TIM as a function of the bondline thickness, applied pressure, deposition pattern, and surface roughness. The results show great improvements compared with a high-performance indium solder.

Copyright © 2008 by ASME
Topics: Nanoparticles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In