Full Content is available to subscribers

Subscribe/Learn More  >

Design of Streamwise Stagger Within a Pin Fin Array to Minimize Pressure Loss

[+] Author Affiliations
Stephen A. Andrews, William D. E. Allan

Royal Military College of Canada, Kingston, ON, Canada

Paper No. IMECE2008-66683, pp. 1497-1505; 9 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


An experiment was conducted on the effects of streamwise stagger on heat transfer and pressure drop in a pin-fin array. The data were analyzed so as to highlight how stagger could be used to design a pin fin array for the lowest possible pressure loss. Design of arrays for low pressure loss is important in electronics cooling applications. They require large amounts of heat to be extracted from fixed areas, using a minimum of power to do so. This analysis found that the minimum friction factor occurred at a streamwise stagger of approximately 12% of the range between fully inline and fully staggered. By fixing the pin diameter, varying the stagger resulted in a 63% reduction in friction factor with only a 18% reduction in the Nusselt number, based on the array footprint. Additionally, it was found that for a fixed Nusselt number, the pin diameter could vary within a finite range, with decreasing diameters permitting arrays with more efficient degrees of stagger which continued to carry the required heating/cooling load.

Copyright © 2008 by ASME
Topics: Pressure , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In