0

Full Content is available to subscribers

Subscribe/Learn More  >

Buoyant Flow and Heat Transfer in a Conducting Baffle

[+] Author Affiliations
S. K. S. Boetcher

University of North Texas, Denton, TX

F. A. Kulacki

University of Minnesota, Minneapolis, MN

Paper No. IMECE2008-69081, pp. 1461-1470; 10 pages
doi:10.1115/IMECE2008-69081
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

A numerical simulation of transient two-dimensional negatively buoyant flow into a straight baffle situated below an isothermal circular cylinder is performed. Both an adiabatic and a highly conducting baffle are considered over a range of Rayleigh numbers, 106 < RaD < 107 . During the quasi-steady-state period, the surrounding fluid is effectively considered infinite in extent and at constant temperature. It is found that in general, the conducting baffle is at a disadvantage in maintaining a short attachment length which is needed to optimally slow the flow to prevent mixing. Qualitative flow fields are shown and heat transfer rates to the cylinder are calculated at the quasi-steady state.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In