Full Content is available to subscribers

Subscribe/Learn More  >

Flow in a Curved Rectangular Channel With Variable Cross-Section Area

[+] Author Affiliations
Avijit Bhunia, C. L. Chen

Teledyne Scientific Company, Thousand Oaks, CA

Paper No. IMECE2008-69068, pp. 1447-1460; 14 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Laminar air flow through a curved rectangular channel with a variable cross-section (c/s) area (diverging-converging) is numerically investigated. Such a flow passage is formed between the two fin walls of a 90° bend curved fin heat sink, used in avionics cooling. Simulations are carried out for two different configurations — (a) a curved channel with long, straight, constant c/s area inlet and outlet sections (entry and exit lengths), and (b) a short, curved channel with no entry and exit lengths. Formation of a complex, 3-D flow pattern and its evolution in space is studied through numerical flow visualization. Results show that a secondary motion sets in the radial direction in the curved section, which in combination with the axial (bulk) flow leads to the formation of a base vortex. In addition, under certain circumstances the axial and secondary flow separate from multiple locations on the channel walls, and create Dean vortices and separation bubbles. The role of variable c/s geometry is elucidated by comparing the results with those of a constant c/s area, curved channel. Investigation of the dimensionless friction factor reveals that the overall channel pressure drop is governed by both the curvature effect as well as the area expansion effect. Due to the combined effect pressure drop for developing flow in a short, curved channel can be even less than that of a straight channel.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In