0

Full Content is available to subscribers

Subscribe/Learn More  >

Kriging Modeling for Engine Mount Optimization in Motorcycles

[+] Author Affiliations
Sudhir Kaul

University of Pretoria, Pretoria, South Africa

Anoop K. Dhingra

University of Wisconsin - Milwaukee, Milwaukee, WI

Paper No. IMECE2009-10108, pp. 1-12; 12 pages
doi:10.1115/IMECE2009-10108
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 13: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4386-4 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

This paper addresses two critical aspects associated with the successful use of a Kriging model for solving the engine mount optimization problem. The two aspects are the selection of an appropriate correlation function and the use of a suitable governing design for sampling within the design space. The selection of a correlation function is critical in building a Kriging model since the function should accurately represent the behavior of the response over the entire design space. Whereas the Gaussian correlation function is most commonly used for building Kriging models, it is generally suitable for only those processes or systems which have a relatively smooth response within the entire design space. The correlation functions that have been evaluated in this paper for building the Kriging models for solving the engine mount optimization problem are as follows: Exponential, Linear Spline, Matern’s 3/2, Matern’s 5/2 and Gaussian. Three types of experimental designs – Fractional Factorial, D-optimal and Latin Hypercube, have been used to select the sampling points for making simulation runs in order to build the Kriging models. A theoretical model that represents the dynamics of the engine mount system in a motorcycle application has been used to build all the surrogate models. The Kriging models are then used to solve the engine mount optimization problem for enhanced vibration isolation with mount stiffness, mount orientation and mount location as the design variables. The optimization results of the Kriging models are compared to the results of the theoretical model. It is found that the D-optimal design in conjunction with Matern’s 3/2 correlation function provides the best results. This can be attributed to the high irregularity of the response function in the design space, especially due to the influence of orientation variables. The use of the surrogate Kriging model simplifies the governing model and leads to a substantial reduction in computational effort for solving the optimization problem. Based on the results, it can be concluded that the Kriging modeling technique can be successfully used to build surrogate models for the engine mount problem for design iterations as well as for design optimization if the correlation function and the governing design are judiciously chosen.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In