Full Content is available to subscribers

Subscribe/Learn More  >

Bio-Heat Transfer in a Model Skin Subject to a Train of Short Pulse Irradiation

[+] Author Affiliations
Jian Jiao, Zhixiong Guo

Rutgers University, Piscataway, NJ

Paper No. IMECE2008-66368, pp. 1259-1266; 8 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Thermal analysis of biological tissues subject to a train of ultrashort pulse irradiations was made of developing a combined time-dependent radiation and conduction bio-heat transfer model. A model skin tissue stratified as three layers with different optical, thermal and physiological properties was considered. Temperature response of the skin tissue exposed to a single ultrashort pulse irradiation was firstly analyzed by the finite volume method in combination with the transient discrete ordinates method. This temperature rise was found to reach pseudo steady state within an extremely short time period in which thermal diffusion is negligible. Since the tissue properties were assumed to be constant during a train of pulse irradiation, this temperature rise subject to a single pulse can be employed for repeated pulses. In the same time, Pennes’ equation was employed to study the bio-heat transfer in the meso-time scale. The effects of pulse strengths and repetition rate on the temperature response in the multi-layer skin tissue were investigated.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In