0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Film Cooling Enhancement in Gas Turbine Combustor Liner

[+] Author Affiliations
Ganesh Subbuswamy, Xianchang Li

Lamar University, Beaumont, TX

Paper No. IMECE2008-69004, pp. 1237-1247; 11 pages
doi:10.1115/IMECE2008-69004
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Combustion chamber or combustor is one of the hottest parts of a gas turbine. Liner is where the actual flame occurs in a combustor and thus, the hottest part of the combustor. The temperature of working fluid inside a liner is about 1200 to 2000K. Because of the hot fluid, the liner is heated up to a temperature almost impossible for the material to withstand. Although the mechanical stresses experienced by the combustor liner are within acceptable limits, high temperatures and large temperature gradients affect the structural integrity of its components, which makes the liner a very critical component of a gas turbine in structural and thermal designs. Film cooling is a traditional method of cooling the inner surface of liner. In film cooling for a combustor, axial holes are drilled along the surface of the liner at discrete locations, through which cold air is injected axially into the liner to provide a film of cool air that prevents direct contact of hot air, and thus, protects the inner wall surface. The film is destroyed in the downstream to the flow because of mixing of cool and hot air. Though this method provides an acceptable cooling, there is a compromise with the increased net benefits of the gas turbine. Therefore, there is a need for new cooling techniques or enhancing the techniques available. The current work is a numerical simulation of film cooling in a model combustor. The effect of coolant injection angles and blowing ratios on film cooling effectiveness is studied. One innovative method, cooling with mist injection, is explored to enhance the performance of film cooling. The effect of droplet size and mist concentration, which can affect the performance of the mist injection, is also analyzed. Fluent, a commercial CFD software, is used in the current work for numerical simulations.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In