0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer and Pressure Drop in a Converging Lattice Structure for Airfoil Trailing Edge Cooling

[+] Author Affiliations
Krishnendu Saha, Sumanta Acharya

Louisiana State University, Baton Rouge, LA

Chiyuki Nakamata

IHI Corporation, Tokyo, Japan

Paper No. IMECE2008-68152, pp. 1175-1184; 10 pages
doi:10.1115/IMECE2008-68152
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Lattice-matrix structures have distinct advantages in enhancing heat transfer in the cooling channels of a gas turbine blade. Lattice structures not only enhance heat transfer coefficient but also provide structural rigidity to the turbine blade. Stationary tests were performed for a 12 times scaled up model at four Reynolds numbers (4,000 < Re < 20,000) in a converging lattice structure. A narrow band liquid crystal technique is used to determine the heat transfer coefficient in the channel. The results shows very high heat transfer coefficient enhancement in the impingement regions. The average heat transfer coefficient enhancement for a channel with lattice structures is also higher (Nu/Nu0 = 1.9–3) than a pin fin cooling configuration channel (Nu/Nu0 = 1.7–2.2). The heat transfer coefficient enhancement decreases with increasing Reynolds number. Pressure data are taken at some specific points throughout the channel. High pressure drop due to the turning of the flow in the lattice structure is observed. Friction factor and overall thermal performance factor are calculated. The overall thermal performance factor lies in the range 0.64–1.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In