0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Coriolis Forces in a Rotating Channel With Dimples and Protrusions

[+] Author Affiliations
Mohammad A. Elyyan, Danesh K. Tafti

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2008-66677, pp. 1093-1102; 10 pages
doi:10.1115/IMECE2008-66677
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

The use of dimple-protrusions for internal cooling of rotating turbine blades has been investigated. A channel with dimple imprint diameter to channel height ratio (H/D = 1.0), dimple depth to channel height ratio (δ/H = 0.2), spanwise and streamwise pitch to channel height ratios (P/H = S/H = 1.62) was modeled. Four rotation numbers; Rob = 0.0, 0.15, 0.39, and 0.64, at nominal flow Reynolds number, ReH = 10000, were investigated to quantify the effect of Coriolis forces on the flow structure and heat transfer in the channel. Under the influence of rotation, the leading (protrusion) side of the channel showed weaker flow impingement, larger wakes and delayed flow reattachment with increasing rotation number. The trailing (dimple) side experienced a smaller recirculation region inside the dimple and stronger flow ejection from the dimple cavity with increasing rotation. Secondary flow structures in the cross-section played a major role in transporting momentum away from the trailing side at high rotation numbers and limiting heat transfer augmentation. While heat transfer augmentation on the trailing side increases by over 90% at Rob = 0.64, overall Nusselt number and friction coefficient augmentation ratios decrease from 2.5 to 2.05, and 5.74 to 4.78, respectively, as rotation increased from Rob = 0 to Rob = 0.64.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In