0

Full Content is available to subscribers

Subscribe/Learn More  >

Macro-System Model for Hydrogen Energy Systems Analysis in Transportation

[+] Author Affiliations
Victor Diakov, Mark Ruth

National Renewable Energy Laboratory, Golden, CO

Michael E. Goldsby, Timothy J. Sa

Sandia National Laboratories, Livermore, CA

Paper No. IMECE2011-63815, pp. 539-546; 8 pages
doi:10.1115/IMECE2011-63815
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME

abstract

The introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of an array of infrastructure elements, such as production, delivery, and dispensing, all associated with energy consumption and emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The MSM uses a federated simulation framework for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of “over-the-net” computation. While the MSM can address numerous hydrogen systems analysis aspects, of particular interest is the optimal deployment scenario. Depending on user-defined geographic location and hydrogen demand curve parameters, the cost-optimal succession of production/delivery/dispensing pathways undergo significant changes (the most important of these being the transition between distributed and central H2 production with delivery). Some ‘tipping’ (break-even) points are identified.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In