Full Content is available to subscribers

Subscribe/Learn More  >

Interfacial Thermal Resistance in Nanoscale Heat Transfer

[+] Author Affiliations
Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2008-69152, pp. 969-973; 5 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


We investigate nanoscale thermal transport across a solid-fluid interface using molecular dynamics simulations. Cooler fluid argon (Ar) is placed between two heated iron (Fe) walls, thereby imposing a temperature gradient within the system. Fluid-fluid and solid-fluid interactions are modeled with Lennard-Jones potential parameters, while Embedded Atom Method (EAM) is used to describe the interactions between solid molecules. The Fe-Ar interaction causes ordering of fluid molecules into quasi-crystalline layers near the walls. This causes temperature discontinuity between these solid-like Ar molecules and the adjacent fluid. The time evolution of the interfacial (Kapitza) thermal resistance (Rk ) and Kapitza length (Lk ) are observed. The averaged Kapitza resistance (Rk,av ) varies with the initial temperature difference between the wall and the fluid (ΔTw ) as Rk,av ∝ ΔTw−0.82.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In