0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Nucleation Site Interaction During Pool Nucleate Boiling by Using Three Artificial Cavities

[+] Author Affiliations
Takato Sato, Hiroyasu Ohtake

Kogakuin University, Tokyo, Japan

Yasuo Koizumi

Shinshu University, Nagano, Japan

Paper No. IMECE2008-68147, pp. 901-905; 5 pages
doi:10.1115/IMECE2008-68147
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Pool nucleate boiling heat transfer experiments were performed for water using heat transfer surfaces having unified cavities. Cylindrical holes of 10 μm in diameter and 40 μm in depth were formed on a mirror-finished silicon wafer of 0.2 mm in thickness using Micro-Electro Mechanical Systems (MEMS) technology. This silicon plate was used as the heat transfer surface. The test heat transfer surface was heated by a semiconductor laser beam. Experiments were conducted in the range of up to 1.35 × 105 W/m2 . When the cavity spacing was narrow such as S = 1 or 2 mm, the convection created by the departure of coalesced bubbles played a main role in heat transfer when the heat flux was low. As the heat flux was increased, the coalesced bubbles absorbed enough heat to become large while the frequent bubble departure was maintained. As a result of it, the latent heat term in heat transfer became large to approximately 40%. When the cavity spacing was wide such as S = 4 mm, a bubble absorbed heat enough to become large before departure and the coalescence of bubbles were not prominent. Thus, the latent heat term took approximately 50% in heat transfer. With an increase in the heat flux, the vertical coalescence became to happen quite frequently. This coalescence made convection vigorous to increase the heat transfer. As a result of it, the convection term increased to 60% and the latent term decreased to 40%.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In