Full Content is available to subscribers

Subscribe/Learn More  >

Flow Behavior and Flow Boiling Heat Transfer in Thin-Rectangular Mini-Channels

[+] Author Affiliations
Yasuo Koizumi

Shinshu University, Ueda, Nagano, Japan

Hiroyasu Ohtake, Tomonari Yamada

Kogakuin University, Tokyo, Japan

Paper No. IMECE2008-66928, pp. 851-858; 8 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Boiling heat transfer of thin-rectangular channels of the width of 10 mm has been examined. The height of the flow channel was in a range from 0.6 mm to 0.4 mm. Experimental fluid was water. Bubbly flow, slug flow, semi annular flow and annular flow were observed. The flow pattern transition agreed well with the Baker flow pattern map for the usual sized flow path. The critical heat flux was lower than the value of the usual sized flow channel. The Koizumi and Ueda method predicted well the trend of the critical heat flux of the present experiments. At the critical heat flux condition, the heat transfer surface was covered by liquid slug, a large bubble pushed away the liquid slug, a dry area was formed on the heat transfer surface and then liquid slug came around to cover the heat transfer surface again. This process repeated rapidly. Following this observation, a heat transfer surface temperature calculation model at the critical heat flux condition was proposed. The calculated result re produced the experimental result.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In