0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Regime Evolution in Long, Serpentine Microchannels With a Porous Carbon Paper Wall

[+] Author Affiliations
Julie E. Steinbrenner, Chen Fang, Kenneth E. Goodson

Stanford University, Stanford, CA

Eon Soo Lee

Samsung Electro-Mechanics, Suwon, South Korea

Fu-Min Wang

National Taiwan University, Taipei, Taiwan

Carlos H. Hidrovo

University of Texas - Austin, Austin, TX

Paper No. IMECE2008-68447, pp. 773-781; 9 pages
doi:10.1115/IMECE2008-68447
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

An important function of the gas delivery channels in Proton Exchange Membrane (PEM) fuel cells is the evacuation of liquid water created at the cathode. The resulting two-phase flow can become an obstacle to reactant transport and a source of parasitic losses. The present work examines the behavior of two-phase flow in 500 μm × 500 μm × 60 cm channels with distributed water injection through a porous carbon paper wall to gain understanding of the physics of flows relevant to fuel cell water management challenges. Flow regime maps based on local gas and liquid flow rates are constructed for experimental conditions corresponding to current densities between 0.5 and 1 A/cm2 and stoichiometric coefficients from 1 to 4. Flow structures are analyzed along the entire length of the channel. It is observed that slug flow is favored to plug flow at high air flow rates and low liquid flow rates. Stratified flow dominates at high liquid flow rates. Along the axial flow direction, the flow regime consistently transitions from intermittent to wavy to stable stratified flow. This progression is quantified using a parameter of flow progression which characterizes the degree of development of the two-phase flow toward the stable stratified condition. This parameter is discussed in relation to fuel cell operating conditions. It provides a metric for analyzing liquid water removal mechanisms in the cathode channels of PEM fuel cells.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In