0

Full Content is available to subscribers

Subscribe/Learn More  >

Biased AC Electroosmosis Micropump for Water Management in PEM Fuel Cells

[+] Author Affiliations
Nazmul Islam

Northern Arizona University, Flagstaff, AZ

Paper No. IMECE2008-68906, pp. 735-738; 4 pages
doi:10.1115/IMECE2008-68906
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Proton exchange membrane (PEM) fuel cells are among the most promising fuel cell technologies. Recent experimental and numerical investigations [1–3] on PEM fuel cells (PEMFC) identified water management as one of the most critical issues for designing robust, high-performance PEM fuel cells. Proper water management within the cell is therefore essential, as dehydration of the membrane or flooding of the cathode result in increasing resistive losses. Flooding reduction in the fuel cell is commonly done by removing water with excessive reactant (H2 or O2) flow rates and elevated gas pressures. This mixture makes air delivery the largest parasitic load on fuel cells. Typically, this type of air delivery consumes more than 20% of the fuel cell power. As an alternative, we have developed a novel biased AC electroosmtic micropump for PEM fuel cell applications that can be fabricated with micro-electro-mechanical-systems (MEMS) compatible semiconductor micro-fabrication. This research paper will experimentally demonstrate the bi-directional pumping action that can prevent flooding, increase power density, and ensure stable performance of fuel cell by removing water from flooded regions and redistributing it to under-saturated regions.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In