0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Thermal Stress for a Liquid-Cooled Exhaust Manifold

[+] Author Affiliations
Dong Fu, Dui Huang, Ahmed Juma, Curtis M. Schreiber, Xiuling Wang, Chenn Q. Zhou

Purdue University - Calumet, Hammond, IN

Paper No. IMECE2008-68892, pp. 725-733; 9 pages
doi:10.1115/IMECE2008-68892
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Liquid-cooled exhaust manifolds are widely used in turbocharged diesel engines. The large temperature gradient in the overall manifold will cause remarkable thermal stress. The objective of the project is to modify the current design for preventing the high thermal stress and extending the life span of the manifold. To achieve the objective, the combination between Computational Fluid Dynamics (CFD) with Finite Element (FE) is introduced. Firstly, CFD analysis is conducted to obtain temperature distribution, providing boundary conditions of the thermal load on the FE mesh. Afterward, FE analysis is carried out to determine the thermal stress. The interpolation of the temperature data from CFD to FE is done by Binary Space Partitioning (BSP) tree algorithm. To accurately quantify the thermal stress, nonlinear material behavior is considered. The computational results are compared with that of Number of Transfer Units (NTU) method, and are further verified with industrial experiment data. All these comparisons indicate that present investigation reasonably predicts the thermal stress behavior. Based on the results, recommendations are given to optimize the manifold design.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In