Full Content is available to subscribers

Subscribe/Learn More  >

Transient Thermal Response of Turbulent Compressible Boundary Layers

[+] Author Affiliations
Hongwei Li, Charles L. Merkle

Purdue University, West Lafayette, IN

M. Razi Nalim

Indiana University - Purdue University - Indianapolis, Indianapolis, IN

Paper No. IMECE2008-68788, pp. 711-720; 10 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


A general numerical method is developed with the capability to predict the transient thermal boundary layer response under various flow and thermal conditions. The transient thermal boundary layer variation due to a moving compressible turbulent fluid of varying temperature was numerically studied on a 2-D semi-infinite flat plate. The Reynolds-averaged boundary-layer equations are solved based on the compressible Falkner-Skan transformation. Turbulence is modeled using a two-layer eddy-viscosity model developed by Cebeci and Smith, and the turbulent Prandtl number formulation originally developed by Kays and Crawford. The governing differential equations are discretized with the Keller-box method. The numerical accuracy is validated through grid independence studies and comparison with the steady state solution. In turbulent flow as in laminar, heat transfer coefficient is initially very different from that obtained from quasi-steady analysis. It is found that, both the transient time scale and the magnitude of the transient heat transfer coefficients differ significantly between turbulent and laminar flow. The more complex variation of transient heat transfer rate in turbulent flow is evident, and needs further study.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In