0

Full Content is available to subscribers

Subscribe/Learn More  >

Obtaining the Sensed Temperatures From a Detailed Model of a Welded Thermocouple

[+] Author Affiliations
Jonathan W. Woolley, Michael A. Bestor, Mark L. Weaver, Keith A. Woodbury

University of Alabama, Tuscaloosa, AL

Paper No. IMECE2008-68031, pp. 649-655; 7 pages
doi:10.1115/IMECE2008-68031
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

When imbedded in dissimilar materials subject to large temperature gradients, thermocouples are known to yield erroneous (bias) temperature measurements. It has been established that the bias error may be accounted for with an appropriate computational model and the measured temperatures may be corrected with an appropriate kernel function. In this work, a thermocouple with a welded bead is considered. Early two-dimensional models considered the thermocouple to be a single wire with effective thermal properties. The model in the current investigation is three-dimensional and represents the sensor as two wires, each with unique thermal properties. The welded bead is represented as a separate entity with properties distinct from those of the wires. The problem of determining what location in the three-dimensional model corresponds to the measured temperature is considered. Earlier models have considered the sensed temperature to be the temperature at the tip of the two-dimensional thermocouple or, in three-dimensional models, the temperature at the center of the volume of the welded bead. In the current work, a theory is set forth for identifying the location at which the temperature is sensed by a thermocouple. This theory is in line with traditional thermoelectric theory and is supported with experimental evaluation with thermal imaging as well as examination of thermocouples by scanning electron microscopy and energy dispersive X-ray analysis. The significance of accurate modeling of the sensed temperatures is demonstrated with a numerical experiment.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In