0

Full Content is available to subscribers

Subscribe/Learn More  >

Aluminum Sand Casting Interfacial Heat Flux Estimation Based on Corrected Temperature Measurements

[+] Author Affiliations
Jonathan W. Woolley, Keith A. Woodbury

University of Alabama, Tuscaloosa, AL

Paper No. IMECE2008-68027, pp. 641-648; 8 pages
doi:10.1115/IMECE2008-68027
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

The estimation of the heat flux at the interface between a solidifying metal casting and mold is a frequently investigated topic. Accurate knowledge of the interfacial heat transfer can be used in solidification simulation to reduce the time and cost of the casting design process. A common and well-established approach to estimating the interfacial heat flux is the solution of the inverse heat conduction problem. Temperature measurements from thermocouples imbedded in the sand mold are used as inputs to the inverse solver. It is well-documented that imbedded thermocouples which are subjected to high temperature gradients will yield biased temperature measurements. By accounting for the sensor dynamics with an appropriate model, the measured temperatures can be corrected to mitigate the effect of the bias error in the estimation of the heat flux. In a previous work, experimentally measured temperatures were obtained from aluminum sand castings and the interfacial heat transfer was evaluated. In other works, the temperature measurement error was demonstrated and the kernel method for correcting measured temperatures was demonstrated with a numerical experiment. In this paper, the simulation of the response of a thermocouple with a three-dimensional computational model is used with the kernel method to correct the experimentally measured temperatures. The previous interfacial heat flux estimates are updated by solving the inverse heat conduction problem with the corrected temperatures as the inputs.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In