0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of a Genetic Optimization Method to a 2-D Constructal-Based Cooling Configuration

[+] Author Affiliations
Mauro Robbe

Delphi Thermal Systems, Bascharage, Luxembourg

Enrico Sciubba

University of Rome “La Sapienza”, Rome, Italy

Paper No. IMECE2008-67614, pp. 613-626; 14 pages
doi:10.1115/IMECE2008-67614
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

The thermal performance of a 2-D section of a prismatic body cooled by internal tubes arranged in a bundle according to the prescriptions of Constructal Theory, is analyzed. The flow inside each tube is fully developed. The heat transfer from the slab to the coolant flowing inside the tubes and the average temperature of the slab provide the metric to evaluate the system thermal performance. In this initial study, all quantities are calculated by reducing the original 3d model to a simplified 2d geometry, corresponding to a section obtained by intersecting the slab with a plane normal to the mean flow direction. One of the possible 2D sections, at an arbitrarily chosen distance from the onset of the fully developed flow regime, has been parameterized to create a design template. A “design of experiment” based on the SOBOL algorithm is used to set an initial family of 2D slab configurations (i.e., different cooling tubes arrangements). A multi-objective genetic algorithm (MOGA II) is then used to optimize the slab thermal performance starting from the initial family set. The results confirm that Constructal Theory correctly predicts the “nearly-optimal” tube arrangement that ensures the minimal average temperature in the solid. However, at least one non-Constructal configuration exists that produces a “better optimum” than Constructal geometry. It is also found that, in the 2-D configuration analyzed here, the two objective functions of “minimum material temperature” and of “maximum heat rejection to the coolant” are concurrent, i.e., they share the same solution space.

Copyright © 2008 by ASME
Topics: Cooling , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In