0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Synthetic Jets Over Natural Convection Heat Sinks

[+] Author Affiliations
Mehmet Arik, Yogen Utturkar

General Electric Global Research Center, Niskayuna, NY

Murat Ozmusul

Pro Solutions USA, Inc., Clifton Park, NY

Paper No. IMECE2008-68784, pp. 511-517; 7 pages
doi:10.1115/IMECE2008-68784
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

In moderate power electronics applications, the most preferred way of thermal management is natural convection to air with or without heat sinks. Though the use of heat sinks is fairly adequate for modest heat dissipation needs, it suffers from some serious performance limitations. Firstly, a large volume of the heat sink is required to keep the junction temperature at an allowable limit. This need arises because of the low convective film coefficients due to close spacing. In the present computational and experimental study, we propose a synthetic jet embedded heat sink to enhance the performance levels beyond two times within the same volume of a regular passive heat sink. Synthetic jets are meso-scale devices producing high velocity periodic jet streams at high velocities. As a result, by carefully positioning of these jets in the thermal real estate, the heat transfer over the surfaces can be dramatically augmented. This increase in the heat transfer rate is able to compensate for the loss of fin area happening due to the embedding of the jet within the heat sink volume, thus causing an overall increase in the heat dissipation. Heat transfer enhancements of 2.2 times over baseline natural convection cooled heat sinks are measured. Thermal resistances are compared for a range of jet operating conditions and found to be less than 0.9 K/W. Local temperatures obtained from experimental and computational agreed within ± 5%.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In