0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Computational Modeling of Steady and Unsteady Cavitating Flows

[+] Author Affiliations
Huiying Li, Frank J. Kelecy

ANSYS Inc., Lebanon, NH

Aleksandra Egelja-Maruszewski

ANSYS Inc., Evanston, IL

Sergio A. Vasquez

ANSYS Inc., Sheffield, UK

Paper No. IMECE2008-67450, pp. 413-423; 11 pages
doi:10.1115/IMECE2008-67450
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

The numerical simulation of steady and unsteady cavitating flows presents unique challenges in the development of robust numerical methodologies. The major difficulties are associated with the large density variations due to the phase change processes, and the modeling of liquid-vapor mass transfer (along with potentially strong interfacial heat transfer). The multiphase cavitation modeling approach described in this paper has been found to be capable of addressing these issues in an accurate and robust fashion, and is therefore suitable for inclusion in an advanced general purpose CFD solver. In the present approach, cavitation can be modeled within the framework of either the multiphase mixture model or the Eulerian multifluid model. The governing equations are the mixture (mixture model) or phase (Eulerian multifluid model) momentum, energy, turbulence, and phase volume fraction equations. The liquid-vapor mass transfer (evaporation and condensation) is modeled using two baseline cavitation models: Schnerr-Sauer model, and Zwart-Gerber-Belamri model. An advanced numerical scheme has been developed for solving the model equations which can handle large liquid-vapor density ratios, provide for mass transfer source terms in phase volume equations, and address the coupling between the phase change rates and the pressure correction equation. In addition, the cavitation models have been extended to compressible multiphase liquid and vapor flow regimes, and to problems involving convective heat transfer. The numerical algorithm has been implemented in an advanced, general-purpose CFD code, FLUENT, and validations have been carried out for a range of steady-state and unsteady flows, including a 2D axisymmetric orifice, a 3D fuel injector, a radial liquid pump, and a vane pump. The results demonstrate that the cavitation models are able to correctly predict the location and size of vapor bubbles, pressure distributions, and bulk flow parameters. Tests also indicate that the present implementation is both fast and robust, as compared to previous approaches. For unsteady simulations, the method can employ large time steps (limited only by physical or mesh motion considerations), making it efficient for unsteady flows driven by either boundary conditions or mesh motion.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In