0

Full Content is available to subscribers

Subscribe/Learn More  >

Two Dimensional Unsteady Laminar Flow of Power Law Fluids Past a Square Cylinder: A Numerical Study

[+] Author Affiliations
Akhilesh K. Sahu, Raj P. Chhabra, V. Eswaran

Indian Institute of Technology, Kanpur, India

Paper No. IMECE2008-69261, pp. 205-212; 8 pages
doi:10.1115/IMECE2008-69261
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

The two-dimensional and unsteady flow of power-law fluids past a long square cylinder has been investigated numerically in the range of conditions 60 ≤ Re ≤ 160 and 0.5 ≤ n ≤ 2.0. Over this range of Reynolds numbers, the flow is periodic in time for Newtonian fluids. However, no such information is available for power law fluids. A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. The macroscopic quantities such as drag coefficients, Strouhal number, lift coefficient as well as the detailed kinematic variables like stream function, vorticity and so on, have been calculated as functions of the pertinent dimension-less groups. In particular, the effects of Reynolds number and of the power-law index have been investigated in the unsteady laminar flow regime. The leading edge separation in shear-thinning fluids produces an increase in drag values with the increasing Reynolds number, while shear-thickening behaviour delays the leading edge separation. So, the drag coefficient in the above-mentioned range of Reynolds number, Re, in shear-thinning fluids (n < 1) initially decreases but at high values of the Reynolds number, it increases. As expected, on the other hand, in case of shear-thickening fluids (n > 1) drag coefficient reduces with Reynolds number, Re. Furthermore, the present results also suggest the transition from steady to unsteady flow conditions to occur at lower Reynolds numbers in shear-thickening fluids than that in Newtonian fluids. Also, the spectra of lift signal for shear-thickening fluids show that the flow is truly periodic in nature with a single dominant frequency in the above range of Reynolds number. In shear-thinning fluids at higher Re, quasi-periodicity sets in with additional frequencies, which indicate the transition from the 2-D to 3-D flows.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In