Full Content is available to subscribers

Subscribe/Learn More  >

Brownian Dynamics Simulations of a Dispersion Composed of Two-Types of Spherical Particles (for Development of a New Technology of Improving the Visibility of Rivers and Lakes)

[+] Author Affiliations
Akira Satoh, Eiji Taneko

Akita Prefectural University, Yurihonjo, Akita, Japan

Paper No. IMECE2008-67142, pp. 137-145; 9 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


We have carried out Brownian dynamics simulations of sedimentation phenomena of a dispersion composed of two-kinds of spherical particles in water under the gravity field. This study may be the first step to develop a new technology which enables us to improve the visibility of rivers and lakes. In the present study, we have modeled sub-micrometer-dimension particles, or dirty particles in lakes, as small spherical particles, and capturing particles as large spherical particles; these two kinds of particles conduct Brownian motion in water, and large particles adsorb small particles to sediment gradually toward the bottom in the gravity field. From the results of Brownian dynamics simulations, the influences of Brownian motion, particle-particle interaction forces, the size of each particle, and the gravity force on the performance of the adsorption of large particles have been discussed. In addition, we have discussed what the most appropriate situation of large particles is to accomplish the most effective adsorption rate or improve the visibility of water most effectively in terms of capturing particles. The most important conclusion derived from the present results is that, in order to improve the capturing performance, the Brownian motion of large particles have to be activated in an appropriate number density without losing the influence of the gravity.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In