0

Full Content is available to subscribers

Subscribe/Learn More  >

Identifying the Mechanisms of Enhanced Water Flow Through Carbon Nanotubes

[+] Author Affiliations
J. A. Thomas, A. J. H. McGaughey

Carnegie Mellon University, Pittsburgh, PA

Paper No. IMECE2008-66489, pp. 39-42; 4 pages
doi:10.1115/IMECE2008-66489
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4871-5 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Pressure-driven water flow through carbon nanotubes (CNTs) with diameters ranging from 1.66 nm to 4.99 nm is examined using molecular dynamics simulation. The flow rate enhancement, defined as the ratio of the observed flow rate to that predicted from the no-slip Hagen-Poiseuille relation, is calculated for each CNT. The enhancement decreases with increasing CNT diameter and ranges from 433 to 47. By calculating the variation of water viscosity and slip length as a function of CNT diameter, it is found that the results can be fully explained in the context of continuum fluid mechanics. The enhancements are lower than previously reported experimental results, which range from 560 to 100000, suggesting a miscalculation of the available flow area and/or the presence of an uncontrolled external driving force (such as an electric field) in the experiments.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In