0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrowetting of Room Temperature Ionic Liquids (RTILs) for Capillary Force Manipulation

[+] Author Affiliations
Abhay Vasudev, Ashish Jagtiani, Li Du, Jun Hu, Yanan Gao, Jiang Zhe

University of Akron, Akron, OH

Paper No. IMECE2009-10699, pp. 419-423; 5 pages
doi:10.1115/IMECE2009-10699
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 12: Micro and Nano Systems, Parts A and B
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4385-7 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

The feasibility of using room temperature ionic liquids (RTILs) as the electrowetting liquid for capillary force microgrippers was studied. The non-volatility and thermal stability of ionic liquids make them suitable for droplet based microgripping application in high temperature and vacuum environments. Electrowetting on co-planar electrodes was utilized to dynamically change the contact angle of a 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6 ) liquid bridge to control the capillary lifting forces. The lifting force generated by the liquid bridge was experimentally characterized. The maximum capillary force was 146μN. The dynamic response of the BmimPF6 liquid bridge was also characterized.

Copyright © 2009 by ASME
Topics: Force , Temperature

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In