0

Full Content is available to subscribers

Subscribe/Learn More  >

Testing Shape Memory of Porous Polymer Tissue Engineering Scaffolds in Compression

[+] Author Affiliations
Hugh Lippincott, Daniel F. Schmidt

University of Massachusetts Lowell, Lowell, MA

Paper No. IMECE2011-64560, pp. 963-967; 5 pages
doi:10.1115/IMECE2011-64560
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

Shape recovery from memory by porous scaffolds for tissue engineering offers easier insertion and self-retention following placement by minimally invasive surgery. Shape memory testing of porous polymer xerogels focuses on the compression cycle and the special aspects of the cycle and equipment used. This contrasts with normal tensile shape memory (SM) testing. In this work a dynamic mechanical analyzer (DMA) was used on small samples to quickly yield measurement of the SM restoration at various stress levels to emulate the forces exerted on the body by a tissue engineering (TE) scaffold returning to its permanent shape. The DMA testing of a hexamethyl diisocyanate trimer crosslinked castor oil (CO) / polycaprolactone (PCL) blend yielded repeated SM with no creep. The porous CO/PCL showed repeated compressive SM at 50% strain with a SM stress-free recovery ratio of 100%. The peak SM recovery work of 6.4 KJ/m3 was measured at 0.5 MPa stress and 6% to 12% strain. In addition to the potential utility of these materials in a tissue engineering setting, the test methods described here are relevant to a broad range of shape memory applications, from medical devices to morphing airframes to self-deploying structures.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In