0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamic Behavior of Magnetic Nanocomposite Spheres Under Magnetic Fields

[+] Author Affiliations
H. L. Wamocha, R. Asmatulu, T. S. Ravigururajan

Wichita State University, Wichita, KS

Paper No. IMECE2011-62762, pp. 871-876; 6 pages
doi:10.1115/IMECE2011-62762
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

In the present study, drug carrying magnetic nanocomposite spheres were fabricated using oil-in-oil emulsion/solvent evaporation method and characterized via different techniques. The spheres with a diameter of 200 nm and 3 μm consist of poly (lactic-co-glycolic acid) (PLGA), a drug and magnetic nanoparticles (e.g., Fe3 O4 or Co0.5 Zn0.5 Fe2 O4 ). The spheres were initially dispersed in both deionized (DI) water and viscous glycerol solutions, and pumped in a magnetic field at different tube diameters, pump speeds and concentrations to study the hydrodynamic behavior of drug-carrying magnetic nanocomposite spheres. The test results showed that the magnetic field, tube diameter, pump speed and magnetic nanoparticle concentrations in the spheres drastically changed the capturing efficiency of the spheres. In the in vivo tests of the spheres, these parameters should be considered in order to increase the efficiency of the drug delivery systems.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In