Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Humpback Whale Inspired Tubercles on Marine Tidal Turbine Blades

[+] Author Affiliations
Timothy Gruber

Massachusetts Institute of Technology, Cambridge, MA

Mark M. Murray, David W. Fredriksson

U.S. Naval Academy, Annapolis, MD

Paper No. IMECE2011-65436, pp. 851-857; 7 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME


The addition of protuberances, inspired by the humpback whale flipper, on the leading edge of lift producing foils has been shown to improve hydrodynamic performance under a certain range of flow conditions. Specifically, finite wing models have displayed delayed stall characteristics at higher angles of attack and increased maximum lift coefficients without significant hydrodynamic penalties. The objective of this project was to investigate the impact that leading edge protuberances (i.e. tubercles) have on the effectiveness of marine tidal turbine blades, especially at lower tidal flow speeds. The experimental results obtained utilizing three different blade designs (baseline and two tubercle modified) are compared. All blades were designed with a 3-D computer aided design software package and manufactured utilizing rapid prototype techniques. The tests were conducted in the 120 ft tow tank at the U.S. Naval Academy using an experimental apparatus that measured flow speed and electrical power generated. Results for power coefficients are presented for a range of tip speed ratios. Cut-in velocity was also used to evaluated the blade designs. For all test criteria, the tubercle modified blades outperformed the smooth leading edge baseline design blades at the lower test velocities, and did not show degraded performance at the higher velocities tested.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In