Full Content is available to subscribers

Subscribe/Learn More  >

A Biomimetic Elastic Cable Driven Quadruped Robot: The RoboCat

[+] Author Affiliations
Elvedin Kljuno, J. Jim Zhu, Robert L. Williams, II, Stephen M. Reilly

Ohio University, Athens, OH

Paper No. IMECE2011-63534, pp. 759-769; 11 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME


State of the art legged robots, such as the Honda’s series of bipedal robots ending in the latest advanced walking robot ASIMO, and the series of bipedal robots of Waseda University including the latest advanced robot WABIAN, employ joint-mount motors, which simplifies the analysis/design and traces the route for an effective control system, but results in legs that are heavy and bulky. Cable-driven robots overcome this shortcoming by allowing the motors to be mounted on or near the torso, thereby reducing the weight and inertia of the legs, resulting in lower overall weight and power consumption. To facilitate analysis and design, typical cable-driven robots use non-stretchable cables, which require at least n+1 motors for an n Degree-of-Freedom (DoF) joint. Therefore, for a robot with N joints, at least N additional motors are needed comparing to joint-mount motor drives. Moreover, the drive train of both joint-mount and cable-driven designs are rigid, which cannot effectively absorb ground impact shocks nor transfer potential energy to kinetic energy and vice versa when the robot is in motion, as biologic animals do. In this paper we present the design and test of a cat-size quadruped robot called RoboCat, which employs stretchable elastic cable-driven joints as inspired by biological quadruped animals. Although it complicates kinematics and dynamics analysis and design, the elastic cables allow n motors to be used for an n-DoF joint, thereby eliminating N motors for a robot with N joints comparing to non-stretchable cables, further realizing the weight and power savings of the cable driven design. Moreover, the elastic cable driven joints not only effectively absorb ground contact shock, but also effectively transfer potential and kinetic energy during walking or running, thereby improving the robot motion performance and energy efficiency. In the paper we will discuss the kinematics and dynamics analysis of elastic cable driven joints, implementation of elastic cable-driven joints on the Ohio University RoboCat, and control.

Copyright © 2011 by ASME
Topics: Robots , Cables , Biomimetics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In