0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Ultrasound Hyperthermia Simulator for Therapeutic Applications

[+] Author Affiliations
Esteban Echeverria, Chandrasekhar Thamire

University of Maryland at College Park, College Park, MD

Paper No. IMECE2011-64205, pp. 671-678; 8 pages
doi:10.1115/IMECE2011-64205
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

In recent times, Ultrasound for therapeutic applications is becoming increasingly popular due to its high practicality and efficiency. However, determination of adequate dosages presents a great challenge due to the difficulty of measuring tissue temperatures during the process. Further, accurate calculation of temperature field induced by ultrasound within the tissue is difficult to develop because of the time-scale differences between pressure and temperature analyses. In order to overcome this issue, practical and accurate methods to couple both analyses are needed. In the present study, Westervelt’s nonlinear wave equation is used to simulate ultrasonic propagation driven by an unfocused piston source in an axisymmetric biological tissue phantom. Using the Finite Difference Time Domain (FDTD) method, a pressure field was calculated for different sinusoidal bursts, frequencies, and source pressures. Average heat generation fields were calculated from the pressure field within an adequate time range for practical purposes. The Pennes bioheat transfer equation with the calculated heat generation fields were used to acquire transient temperature distributions. Effect of source pressure, frequency, source radius, and trial duration on the temperature profiles was examined. It can be observed from the simulations that continuous wave signals increase temperature at a focus in shorter times, while discrete pulses with adequate duty factors can be useful in maintaining required temperatures constant while diffusing heat along the tissue. The methodology presented here can be of use in many applications such as increasing necrotic volume for tissue ablation purposes.

Copyright © 2011 by ASME
Topics: Ultrasound

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In