0

Full Content is available to subscribers

Subscribe/Learn More  >

Automatic Generation of a Subject Specific Upper Body Model From Motion Data

[+] Author Affiliations
Derek Lura, Stephanie Carey, Rajiv Dubey

University of South Florida, Tampa, FL

Paper No. IMECE2011-63953, pp. 587-593; 7 pages
doi:10.1115/IMECE2011-63953
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

This paper details an automated process to create a robotic model of a subject’s upper body using motion analysis data of a subject performing simple range of motion (RoM) tasks. The upper body model was created by calculating subject specific kinematics using functional joint center (FJC) methods, this makes the model highly accurate. The subjects’ kinematics were then used to find robotic parameters. This allowed the robotic model to be calculated directly from motion analysis data. The RoM tasks provide the joint motion necessary to ensure the accuracy of the FJC method. Model creation was tested using five healthy adult male subjects, with data collected using an eight camera Vicon© (Oxford, UK) motion analysis system. Common anthropometric measures were also taken manually for comparison to the FJC kinematic measures calculated from marker position data. The algorithms successfully generated models for each subject based on the recorded RoM task data. Analysis of the generated model parameters relative to the manual measures was performed to determine the correlations. Methods for replacing model parameters extracted from the motion analysis data with hand measurements are presented. The accuracy of the model generating algorithm was tested by reconstructing motion using the parameters and joint angles extracted from the RoM tasks data, correlated manual measurements, and height based correlations from literature data. Error was defined as the average difference between the recorded position and reconstructed positions and orientations of the hand. For all of the tested subjects the model generated using the RoM tasks data showed least average error over the tested trials. Each of the tested results were significantly different in position error with the FJC generated model being the most accurate, followed by the correlated measurement data, and finally the height based calculations. No difference was found between the end effector orientation of generated models. The models developed in this study will be used with additional subject tasks in order to better predict human motion.

Copyright © 2011 by ASME
Topics: Motion

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In